Lesson Plan

Subject : Material Engineering (ES-204)

& Materials Engineering Lab (ES-206LA)

Lesson plan Duration : 15 Weeks

Work load (Lecture/Tutorial/Practical) per week: L / T / P: 3 / 2 / 4 (Hrs)

Lecture No	Theory	Practical		
		Day	Торіс	
1	Unit I: Crystallography: Review of Crystal Structure	1	To Study various Crystal Structures through Ball Models.	
2	Space Lattice, Co-ordination Number ,Number of Atoms per Unit Cell			
3	Atomic Packing Factor			
4	Imperfection in Metal Crystals: Crystal Imperfections and their Classifications			
5	Point Defects, Line Defects, Edge dislocation		To study the components and functions of Metallurgical Microscope.	
6	Screw Dislocation			
7	Surface Defects, Volume Defects	2		
8	Introduction to Engineering materials and Standard Materials Designation: Introduction to Engineering materials			
9	Steel Terminology, Standard Designation System for Steels	3	To learn about the process of Specimen Preparation for metallographic examination.	
10	Indian Standard specifications for steels as per BIS: Based on Ultimate Tensile Strength and based on Composition			
11	AISI-SAE standard designation for Steels and Aluminium Alloys			
12	Unit II : Phase Diagrams: Alloy Systems, Solid solutions, Hume Rothery's Rules, Intermediate phases			
13	Phase Diagrams, Gibbs Phase Rule	4	To perform Standard test Methods for Estimation of Grain Size.	
14	Cooling curves, The Lever Rule, binary phase diagrams			
15	Applications of Phase Diagrams, Phase Transformation, Micro constituents of Fe-C system			
16	Allotropic Forms of Iron ,Iron-iron carbide phase diagram, Modified Iron Carbon Phase Diagrams			
17	Isothermal Transformation, TTT Curve	5	To perform Microstructural Analysis of Carbon Steels and low alloy steels.	
18	Heat Treatment: Heat treatment of steels, Annealing, Normalising, Hardening, Tempering			

19	Case Hardening, Ageing, Aus tempering and Mar tempering, Surface Hardening,		
20	Mass Effect, Equipments for Heat Treatment, Major Defects in Metals or Alloys due to faulty Heat treatment.	6	To perform Microstructural Analysis of Cast Iron.
21	Unit III: Deformation of Metal: Elastic and Plastic Deformation, Mechanism of Plastic Deformation		
22	Slip; Critical Resolved Shear Stress, Twinning,		
23	Conventional and True Stress Strain Curves for Polycrystalline Materials		
24	Yield Point Phenomena, Bauschinger Effect, Work Hardening		To perform Microstructural Analysis of Non-Ferrous Alloys: Brass & Bronze.
25	Failure of Materials: Fatigue, Fatigue fracture, fatigue failure		
26	Mechanism of Fatigue Failure, Fatigue Life calculations	7	
27	Fatigue Tests, Theories of Fatigue		
28	Creep: Creep Curve, Types of Creep, Factors affecting Creep	8	To perform Microstructural Analysis of Non-Ferrous Alloys: Aluminium Alloys.
29	Mechanism of Creep, Creep Resistant Material, Creep Fracture		
30	Creep Test, Stress Rupture test		
31	Unit IV: Introduction to Metallography: Metallography, Phase analysis, Dendritic growth		
32	Cracks and other defects Corrosion analysis, Intergranular attack (IGA)	9	To Perform annealing of a steel specimen and to analyze its microstructure.
33	Coating thickness and integrity, Inclusion size, shape and distribution		
34	Weld and heat-affected zones (HAZ)		
35	Distribution and orientation of composite fillers, Graphite nodularity		
36	Intergranular fracturing	10	To Perform Hardening of a steel specimen and to analyze its microstructure
37	Materials Characterization Techniques: Characterization techniques		
38	X-Ray Diffraction (XRD), Scanning Electron Microscopy		
39	Transmission electron microscopy, atomic force microscopy		
40	Scanning tunneling microscopy, Atomic absorption spectroscopy		